Hyperspectral Differentiation of Phytoplankton Taxonomic Groups: A Comparison between Using Remote Sensing Reflectance and Absorption Spectra
نویسندگان
چکیده
The emergence of hyperspectral optical satellite sensors for ocean observation provides potential for more detailed information from aquatic ecosystems. The German hyperspectral satellite mission EnMAP (enmap.org) currently in the production phase is supported by a project to explore the capability of using EnMAP data and other future hyperspectral data from space. One task is to identify phytoplankton taxonomic groups. To fulfill this objective, on the basis of laboratory-measured absorption coefficients of phytoplankton cultures (aph(λ)) and corresponding simulated remote sensing reflectance spectra (Rrs(λ)), we examined the performance of spectral fourth-derivative analysis and clustering techniques to differentiate six taxonomic groups. We compared different sources of input data, namely aph(λ), Rrs(λ), and the absorption of water compounds obtained from inversion of the Rrs(λ)) spectra using a quasi-analytical algorithm (QAA). Rrs(λ) was tested as it can be directly obtained from hyperspectral sensors. The last one was tested as expected influences of the spectral features of pure water absorption on Rrs(λ) could be avoided after subtracting it from the inverted total absorption. Results showed that derivative analysis of measured aph(λ) spectra performed best with only a few misclassified cultures. Based on Rrs(λ) spectra, the accuracy of this differentiation decreased but the OPEN ACCESS Remote Sens. 2015, 7 14782 performance was partly restored if wavelengths of strong water absorption were excluded and chlorophyll concentrations were higher than 1 mg∙m. When based on QAA-inverted absorption spectra, the differentiation was less precise due to loss of information at longer wavelengths. This analysis showed that, compared to inverted absorption spectra from restricted inversion models, hyperspectral Rrs(λ) is potentially suitable input data for the differentiation of phytoplankton taxonomic groups in prospective EnMAP applications, though still a challenge at low algal concentrations.
منابع مشابه
Absorption spectrum of phytoplankton pigments derived from hyperspectral remote-sensing reflectance
For a data set collected around Baja California with chlorophyll-a concentration ((chl-a)) ranging from 0.16 to 11.3 mg/m, hyperspectral absorption spectra of phytoplankton pigments were independently inverted from hyperspectral remote-sensing reflectance using a newly developed ocean-color algorithm. The derived spectra were then compared with those measured from water samples using the filter...
متن کاملPhytoplankton Group Identification Using Simulated and In situ Hyperspectral Remote Sensing Reflectance
In the present study we investigate the bio-geo-optical boundaries for the possibility to identify dominant phytoplankton groups from hyperspectral ocean color data. A large dataset of simulated remote sensing reflectance spectra, Rrs(λ), was used. The simulation was based on measured inherent optical properties of natural water and measurements of five phytoplankton light absorption spectra re...
متن کاملUse of hyperspectral remote sensing reflectance for detection and assessment of the harmful alga, Karenia brevis.
We applied two numerical methods to in situ hyperspectral measurements of remote sensing reflectance Rrs to assess the feasibility of remote detection and monitoring of the toxic dinoflagellate, Karenia brevis, which has been shown to exhibit unique absorption properties. First, an existing quasi-analytical algorithm was used to invert remote sensing reflectance spectra, Rrs(lambda), to derive ...
متن کاملInversion of irradiance and remote sensing reflectance in shallow water between 400 and 800 nm for calculations of water and bottom properties.
What we believe to be a new inversion procedure for multi- and hyperspectral data in shallow water, represented by the subsurface irradiance and remote sensing reflectance spectra, was developed based on analytical equations by using the method of nonlinear curve fitting. The iteration starts using an automatic determination of the initial values of the fit parameters: concentration of phytopla...
متن کاملA Novel Statistical Approach for Ocean Colour Estimation of Inherent Optical Properties and Cyanobacteria Abundance in Optically Complex Waters
Eutrophication is an increasing problem in coastal waters of the Baltic Sea. Moreover, algal blooms, which occur every summer in the Gulf of Gdansk can deleteriously impact human health, the aquatic environment, and economically important fisheries, tourism, and recreation industries. Traditional laboratory-based techniques for water monitoring are expensive and time consuming, which usually re...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Remote Sensing
دوره 7 شماره
صفحات -
تاریخ انتشار 2015